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ABSTRACT 
Agent-based modelling and simulation techniques are 
computationally demanding, allowing simulation of large complex 
models which can scale up and have high memory processing and 
storage demands. Simulating biological models formed by 
individual cells are particularly favoured on these kinds of 
modelling techniques. FLAME (Flexible Large scale Modelling 
Environment) framework is one example of a framework which 
allows modellers to build serial and parallelized versions of the 
models by simply adding extra flags during execution. In this paper, 
we discuss the issues faced when porting the same model developed 
for simulation from FLAME-HPC to graphics card version 
FLAME-GPU, highlighting the advantages and disadvantages from 
the modelling and simulation perspectives. The paper discusses the 
experience and issues faced when models had to be essentially 
rewritten for a GPU version, enhancing simulation time but limiting 
model complexity in the process. 

Categories and Subject Descriptors 
C.1.4 [Parallel Architectures]: Distributed computing                I.6 
[Simulation and Modelling] architectures and languages 

General Terms 
Performance, Design, Experimentation, Modelling. 

Keywords 
FLAME, FLAME GPU, Biological modelling 

1. INTRODUCTION 
Modelling behavior of complex systems is an emergent science 
which demonstrates the complex and social behavior of large scale 
communities working together in real world scenarios. Examples 
of ant colonies, social networks and even bird flocking is referred 
to as complex systems consisting of individuals interacting together 
to produce emergent behavior (Figure 1). Simulating complex 
models is a cumbersome task involving massive data processing, 
storage issues and pattern recognition of behaviors within the 
system. Depending on the complexity of the model, some 
simulations may take days or even weeks to finish processing. 
Sometimes these would abandon due to low memory or loss of 
processing power of the infrastructure underneath. Past modelling 
techniques which involve large-scale system modelling have used 
high performance computing grids and GPU cards to quickly 
process large complex equations for multi-massive variables to 
produce emergent solutions [3, 4, 6] to predict how systems behave. 
Agent-based modelling (ABM), also known as individual-based 
modelling, is a technique which best models complex systems by 
modelling the individual interacting elements rather than a whole 
system and serves as an alternative to conventional differential 

equation which models the complete system. This approach allows 
a bottom-up approach of generating behaviour from the bottom up 
concentrating on the individual interacting units which are given 
clear defined rules and allowed to simulate. The produced emergent 
pattern of system behaviour, can then be studied to test and 
understand the behaviour of complex systems which is otherwise 
not possible from studying these systems from an outside view. 

 
Figure 1. Mapping real world complexity to simulated 

environment. C.f. [1] 
Due to the complexity of these models and the time it takes to 
simulate them, researchers often use high performance computing 
girds to reduce the time it takes to simulate and analyse the results. 
Working with economists and biologists, computer scientists 
developed the FLAME framework which can allow non computer 
scientists to easily write their models in an easy to understand 
language specification, which could then automatically produce 
parallelizable code to execute on grids. Initially developed for HPC 
grids, the framework was adapted for executing on Nvidia graphics 
cards to allow simulations to run faster, improving performance 
upto 80% on a single machine [8]. However this capability comes 
with a cost and technical limitations on the models themselves. This 
paper aims to discuss these experiences from a modeller’s 
perspective, highlighting the challenges of multiple platforms being 
used to simulate the same complex model across two platforms, to 
discuss the following research questions: 

RQ1: Is it feasible to have unified modelling language to define a 
model abstraction, to allow execution on multiple platforms? 

RQ2: Is it useful to define favourable architectures for particular 
models in advance? 

RQ3: What are the tradeoff when using multiple platforms for 
simulation? 
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RQ4: Challenges faced by modelers in writing, simulating and 
testing the models. 

2. FLAME FRAMEWORK 
The Flexible Large-scale Agent Modelling Environment (FLAME) 
(www.flame.ac.uk) is a framework which is specially written for 
simulating large populations of agents or individual software 
elements on parallel architecture. Till date, there are various agent-
modelling frameworks such as Repast, Jade developed by IBM and 
Netlogo being extensively used by the social science community, 
some of these allow only serial executions requiring the model to 
be specially rewritten for parallel execution. 

 
Figure 2. Block diagram of FLAME framework 

FLAME acts as an enabling tool to create agent-based models. The 
agents are based on the extended state machine (X-machine) 
methodology which allows definition of state machines to be 
equipped with memory and communicating messages. Transitions 
between functions of each X-machine is determined by the memory 
state and messages being read by the X-machine agent (Figure 3). 
These agents can be defined by modellers, from any domain, as 
cells in a biological model or as banks and firms in an economic 
model. Different agents interact using messages being read/written 
through the transition functions and message boards. 

Agent-based model engineering orients towards how the 
requirements and the system are represented. Use of formal 
specification methods and different processes to capture internal 
and external concepts of multi-agent systems has been highly 
researched [10, 11]. Various approaches have been discussed on 
how the behavior of the system can be represented using semantic 
approaches such as model checking [12]. 

 
Figure 3. X-Machine agent 

 
Figure 4. Block diagram of FLAME working. 

 
Figure 4 describes how models are written in a descriptive XML 
notation, which is then fed into a parser. The parser produces 
automatic parallelizable code which is ready to be run over multiple 
processors of a grid. The same parser can also run the code on GPU 
cards. Simulation results are produced on disk to be analysed later. 

ABMs are based on the principles of cellular automata updates. 
Popular agent-based frameworks allow synchronizations using 
update schedulers such as used in MASON, REPAST, and 
SWARM. FLAME uses initial synchronization calculations using 
the definition of the model from the definition language. The 
parallelization is then done using MPI interacting with C functions 
to allow agents to be distributed across multiple processors 
synchronization every time they write and read to message boards. 
FLAME prevents any asynchronous agent update as in cellular 
automata models. 

2.1 Porting on GPU 
The GPU version of FLAME shares the same principles such as 
using the same specification language (XML) as an initial 
description of the models. However the agent functions are written 
in C++ and interface with CUDA libraries such that they can be 
processed on the machine’s local graphics cards. The models 
showed an 80% improvement in simulation time and allowed real-
time and 3D rendering of results which the simulations are running 
[8]. Each agent would thus become an independent thread 
performing its functions wrapped by the GPU kernel. 

3. PORTING PROBLEMS 
Although both versions of FLAME use similar methodologies and 
description languages, a number of changes had to be introduced 
into the model itself, prior to the parser step, to ensure it runs on the 
GPU. Upon inspection, most of these changes were due to the basic 
capability of the HPC grid versus the GPU cards. These changes 
have been discussed below to highlight some issues raised by 
portability from a modellers point of view: 

3.1.1 Writing the Agents 
From the modeller’s perspective, implementing the system in 
FLAME in general was quite straight forward provided certain 
rules were being follows. Due to synchronization nature of the 
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framework which are predefined before the simulation runs, 
FLAME does not allow agent behavior to contain loops which may 
cause it to go back to a previous states. Similarly communications 
are decided at specific steps before the code is parallelized to ensure 
synchronization points (when the message boards are locked for 
reading and writing) to prevent any discordances in the data of the 
messages read, following a step-by-step progression in the model. 

3.1.1.1 Pre-allocation of Agent memory 
The grid FLAME version allowed memory to be allocated 
dynamically as the simulation runs. This allowed complex agent 
memory such as using dynamic arrays or linked lists to be generated 
as the model runs on the grid. This however, is not the same on 
GPUs. The GPU needs for all memory to be allocated in advance 
before the simulation starts, due to the manner in which the agents 
are executed as threads on the cards. The means that all dynamic 
arrays in a model had to be changed to static arrays of specific sizes, 
which caused considerable changes on the model reducing some of 
the model complexity by limiting the memory size of the agents.  

In addition to the strict memory sizes, the grid version allows 
memory data structures of multiple data types to be created. This 
capability was not exhibited by FLAME GPU, allowing only a 
specific type of variables of fixed lengths data types. This raises 
issues if there are certain data structures used in the model which 
act as records of multiple datasets used by the agent such as a 
product inventory or biological rules. The cell model [9] was 
changed from a data structure into a 1D array and stored in memory 
where agents could globally read it serially. This caused a 
considerable rewriting of the model itself, however it did reduce the 
potential processing time of the model a data was being access 
serially rather than as dynamic data structures in the HPC version. 

3.1.1.2 Message Communication between agents 
In the grid version of FLAME, signals can be passed between 
agents as messages with each agent creating multiple messages as 
needed. FLAME GPU limits this to only one message per function 
to be created which limited the amount of information that was 
possible with one function. The model has to be broken down to 
allow multiple function transitions within one function to allow 
messages to be communicated making the model quite complex or 
expanding the message at times to create much more information 
than previously designed. This constraint was introduced due to the 
manner in which the agent threads communicate allowing only 
single message to be synchronized per function. 

3.1.1.3 Simpler versus Complex 
Although both versions grid and GPU are suitable for simulation, 
the GPU version seems more suitable for simpler model executions 
with agents with basic memory allowing much faster simulations 
as compared to the grid version. This makes it suitable for game 
based simulations to quickly visualize the results quickly and where 
data analysis is not an extensive requirement. However with more 
complex models such as the model of the complete European 
economy, with 15 different agent types with increasing complexity 
and multiple interactions, such models could not be processed on 
GPU cards. 

3.1.1.4 Looping through Messages 
Following is an example of looping through a message list as 
defined in FLAME HPC, which allows an agent to read through all 
messages in the list and find the agent id and state from the message 
and record it in its memory. 
 

int MyFunction (xmahine_memory* agent, 
xmachine_message_list* list) { 
       xmachine_message* message = get_first_message(list); 
       while(message) { 
                if (message->id == agent->id) { 
                        agent->state += message->state; 
                        return 0; 
                } 
        message = get_next_message(message, list); 
        } 
        return 0; 
} 
However the above code does not work in FLAME GPU, causing 
the simulation to crash or hang. Instead an extra flag ‘finished’ 
needs to be introduced to tell the code to leave the while loop. 
 

int MyFunction(xmahine_memory* agent, 
xmachine_message_list* list) { 
       bool finished = false; 
       xmachine_message* message = get_first_message(list); 
       while(message) { 
                if (!finished) { 
                        if (message->id == agent->id) { 
                                agent->state += message->state; 
                                finished = true; 
                        } 
                } 
        message = get_next_message(message, list); 
        } 
        return 0; 
} 
 
This behavior was only observed in the GPU version, raising a 
concern if while loops have to be explicitly broken for GPU 
execution when compared to the gird version. 

3.1.1.5 Discrete versus continuous 
In the GPU version, agents need to be defined in advanced if they 
are of natures – discrete or continuous agents. This affects how their 
messages are parsed and handled during the simulation. This 
required modellers to understand this in advance which was not 
seen in the grid version. The grid version allows easier writing of 
the agents and all are handled the same way. 

3.1.1.6 Agent birth and death 
Both architectures were able to handle agent addition similarly. 
Similar to the problem of dynamic memory allocation, agents can 
be introduced in the system if predetermined for the GPU. Every 
simulation the agent would be introduced using an environment 
agent, which keeps track of the maximum agents and generate a 
new agent by using the thread_id : 

ID= Maxid +thread ID, where thread ID = blockIDx.x *block 
Dimx+threadId.x 

This should guarantee that all the generated ID's are unique 
(although they won't be sequential), without using complicated 
atomic operations. However the GPU could only add 1 agent at a 
time step, whereas the Grid version could add multiple agents per 
step.  

3.1.1.7 Real time visualization 
The Grid version allows simulations to run as batch files producing 
results on disk. The results have to later downloaded and processed 
to find data patterns for the simulations. The GPU was much 
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simpler to do this, as it immediately integrates with a visualization 
engine. The agent could be observed as the simulation happens and 
no time waits were needed to visualize the simulations. 

4. FUTURE WORK 
The current lessons from FLAME are now being ported as a 
simulation service on the cloud. Table 1 presents why this would 
be beneficial comparing it to the grid versions. 

Table 1. Case for Cloud computing for ABMs 
Issues  High performance 

computing 
Cloud computing 

Kind of 
models and 
processing 

The processing is 
limited to the nature of 
simple equation models 
to be processed. 

Can introduce 
dynamic scalability 
for more complex 
processing. 

Cost Access to expensive 
hardware to model and 
simulate systems. 

Resources can be 
hired as needed. 

Failure 
recovery 

No fault recovery when 
disk space runs out. 

Applications can burst 
to more Clouds if 
needed, automatically. 

Dynamic 
changes in 
the model 

No real time processing, 
jobs are submitted to a 
queue, which means real 
time changes cannot be 
incorporated in the 
models. 

Can execute jobs on 
the fly which can read 
real time data feeding 
to the models directly. 

 

In addition to the advantages, the cloud based systems introduces 
multiple levels of complexity which are discussed in Figure 5. 

 
Figure 5. Block diagram of FLAME –Cloud. 

Figure 5 describes the architecture of ABMaaS platform. The 
agent code and model description are input to an ABMaaS parser 
which is able to perform task distribution and allocation in order to 
allocate resource efficiently on the backend platforms. The 
platform providers will have certain service level agreements that 
need to be consulted when resources are pooled and distributed 
with the nature of simulations. Depending on the demands, virtual 
machines can be allocated. These machines are monitored and 
communicated to a central database to store agent data which is 
continuously being referenced to during the simulation processing 
on the machines. Further mechanism such as fault tolerance have 
to be implemented which will be prevent the high demand of the 
simulation to affect the active virtual machines.  

However the current design faces a multiple additional 
challenges such as workload balance over virtual machines, model 

verification issues, fault tolerance, security and performance 
optimization. Each of these are still open research problems which 
need to be solves separately before the system is put together.  

5. CONCLUSIONS 
Modellers and decision makers are increasingly looking at 

simulations larger and larger simulations.  The motivation is clear 
– more realistic simulations requires larger populations, or multiple 
types of population, as the validity of emergent characteristic 
dependent on both: the accuracy of the behaviour modelled and 
population sizes.  In addition there is a need to forecast behaviours 
of systems faster than the wall-clock time, and run-time costs are 
presently inhibiting the effective use of ABM as forecasting tool. 

Agent-based models have successfully been able to uncover new 
aspects of economic systems such as the effect of migration on EU 
labor markets [1] or uncovering some underlying facts in biological 
systems [6, 7]. In agent-based modelling, the agents can be complex 
(e.g. humans), or simple (e.g. ants), with varying memory and 
functions. Simulating natural systems, researchers have shown how 
complex ant colony optimizations can be used to help solve 
complex network routing problems [8] or study the biological 
transcription functions in cells or bacterial behavior living in 
human tissues [6, 7]. 

The current Agent-based Modelling Environments can simulate 
regional economies on supercomputers – focusing on a number of 
markets – labour, credit, financial – integrated into a large model 
running on supercomputers.  The frameworks need to be extended 
to provide a more powerful mechanism for dealing with the 
complex agent behavior and cloud environments could enable on 
demand high performance computing to solve some of the current 
issues faced by present architectures. Eve with this route, models 
written for HPC and GPU should portray similar characteristics, 
hiding away much orf the software complexity from the non 
computing scientists using the tools to write their models which is 
a challenge in its own right. 

6. ACKNOWLEDGMENTS 
Our acknowledgement to the whole FLAME group developers and 
modellers for allowing us to study both models in detail.  

7. REFERENCES 
[1] Grimm, Volker; Railsback, Steven F. (2005). Individual-based 

Modeling and Ecology. Princeton University Press. p. 485. 
ISBN 978-0-691-09666-7 

[2] Coakley ST, Holcombe, M. Smallwood R, From molecules to 
insect communities - how formal agent based computational 
modelling is uncovering new biological facts, Scientiae  
Mathematicae  Japonicae  Online,  pp.765–778, 2006. 

[3] M.  Kiran, P. Richmond, M. Holcombe, L. S  Chin, D. Worth, 
and C. Greenough, FLAME: Simulating large populations of 
agents on parallel hardware architectures, in Proceedings of 
the 9th International Conference on Autonomous Agents and 
Multiagent Systems, 2010, pp. 1633–163 

[4] M. Holcombe, S. Chin, S. Cincotti, M. Raberto, A. Teglio, S. 
Coakley, C. Deissenberg, S. vander Hoog, C. Greenough, H. 
Dawid, M. Neugart, S. Gemkow, P. Harting, M. Kiran, and D. 
Worth, Large-scale modelling of economic systems, Complex 
Systems, no. 2, pp. 175–191, 2012. 

[5] M. Pogson, M. Holcombe, R. Smallwood, and E. Qwarnstrom, 
Introducing spatial information into predictive NF-kB 
modelling – an agent-based approach, PLoS ONE, vol. 3, no. 
6, p. e2367, 2008. 



 5 

[6] S. Maleki-Dizaji, M. Holcombe, M. Rolfe, P. Fisher, J. Green, 
R. Poole, and A. Graham, A systematic approach to 
understanding Escherichia coli responses to oxygen from 
microarray raw data to pathways and published abstracts, 
Online Journal  of  Bioinformatics, vol. 10, no. 1, pp. 51–59, 
2011 

[7] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, 
and C. Greenough, Exploitation of high performance 
computing in the flame agent-based simulation framework, in 
2012 IEEE High Performance Computing and 
Communication, June 2012, pp. 538–545 

[8] Richmond P., Romano D. (2008), A High Performance 
Framework For Agent Based Pedestrian Dynamics On GPU 
Hardware, Proceedings of EUROSIS ESM 2008 (European 
Simulation and Modelling), October 27-29, 2008, Universite 
du Havre, Le Havre, France 

[9] M. Burkitt, M. Kiran, S. Konur, M. Gheorghe, F. Ipate Agent-
based High-Performance Simulation of Biological Systems on 
the GPU, IEEE International Conference on High 
Performance Computing and Communications, Aug, 2015, 
accepted  

[10] Gómez-Sanz J.J., Gervais M.P, Weiss G., 2004, Survey on 
Agent-Oriented Software Engineering Research, 
Methodologies and Software Engineering, Multiagent 
Systems, Artificial Societies and Simulated Organizations. 

[11] Wooldridge M., 1998, Agent-based software engineering, 
IEEE Proceedings software 144(1) 

[12] Rao A., Georgeff M., 1993, A model theoretic approach to 
verification of situated reasoning systems. Artificial 
Intelligence. 

 

 


